2023年七年级数学二元一次方程组教案优秀10篇
作为一名老师,时常要开展教学设计的准备工作,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。我们应该怎么写教学设计呢?众鼎号为朋友们精心整理了10篇《2023年七年级数学二元一次方程组教案》,如果对您有一些参考与帮助,请分享给最好的朋友。
七年级数学二元一次方程组教案范文三: 二元一次方程组 篇一
一。教学目标:
1.认知目标:
1)了解二元一次方程组的概念。
2)理解二元一次方程组的解的概念。
3)会用列表尝试的方法找二元一次方程组的解。
2.能力目标:
1)渗透把实际问题抽象成数学模型的思想。
2)通过尝试求解,培养学生的探索能力。
3.情感目标:
1)培养学生细致,认真的学习习惯。
2)在积极的教学评价中,促进师生的情感交流。
二。教学重难点
重点:二元一次方程组及其解的概念
难点:用列表尝试的方法求出方程组的解。
三。教学过程
(一)创设情景,引入课题
1.本班共有40人,请问能确定男_各几人吗?为什么?
(1)如果设本班男生x人,_y人,用方程如何表示?(x+y=40)
(2)这是什么方程?根据什么?
2.男生比_多了2人。设男生x人,_y人。方程如何表示?x,y的值是多少?
3.本班男生比_多2人且男_共40人。设该班男生x人,_y人。方程如何表示?
两个方程中的x表示什么?类似的两个方程中的y都表示?
象这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。
4.点明课题:二元一次方程组。
[设计意图:从学生身边取数据,让他们感受到生活中处处有数学]
(二)探究新知,练习巩固
1.二元一次方程组的概念
(1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。
[让学生看书,引起他们对教材重视。找关键词,加深他们对概念的了解。]
(2)练习:判断下列是不是二元一次方程组:
x+y=3,x+y=200,
2x-3=7,3x+4y=3
y+z=5,x=y+10,
2y+1=5,4x-y2=2
学生作出判断并要说明理由。
2.二元一次方程组的解的概念
(1)由学生给出引例的答案,教师指出这就是此方程组的解。
(2)练习:把下列各组数的题序填入图中适当的位置:
x=1;x=-2;x=;-x=
y=0;y=2;y=1;y=
方程x+y=0的解,方程2x+3y=2的解,方程组x+y=0的解。
2x+3y=2
(3)既满足第一个方程也满足第二个方程的解叫作二元一次方程组的解。
(4)练习:已知x=0是方程组x-b=y的解,求a,b的值。
y=0.55x+2a=2y
(三)合作探索,尝试求解
现在我们一起来探索如何寻找方程组的解呢?
1.已知两个整数x,y,试找出方程组3x+y=8的解。
2x+3y=10
学生两人一小组合作探索。并让已经找出方程组解的学生利用实物投影,讲明自己的解题思路。
提炼方法:列表尝试法。
一般思路:由一个方程取适当的xy的值,代到另一个方程尝试。
[把课堂还给学生,让他们探索并解答问题,在获取新知识的同时也积累数学活动的经验。]
2.据了解,某商店出售两种不同星号的“红双喜”牌乒乓球。其中“红双喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同学一共买了4盒,刚好有15个球。
(1)设该同学“红双喜”二星乒乓球买了x盒,三星乒乓球买了y盒,请根据问题中的条件列出关于x、y的方程组。(2)用列表尝试的方法解出这个方程组的解。
由学生独立完成,并分析讲解。
(四)课堂小结,布置作业
1.这节课学哪些知识和方法?(二元一次方程组及解概念,列表尝试法)
2.你还有什么问题或想法需要和大家交流?
3.作业本。
教学设计说明:
1.本课设计主线有两条。其一是知识线,内容从二元一次方程组的概念到二元一次方程组解的概念再到列表尝试法,环环相扣,层层递进;第二是能力培养线,学生从看书理解二元一次方程组的概念到学会归纳解的概念,再到自主探索,用列表尝试法解题,循序渐进,逐步提高。
2.“让学生成为课堂的真正主体”是本课设计的主要理念。由学生给出数据,得出结果,再让他们在积极尝试后进行讲解,实现生生互评。把课堂的一切交给学生,相信他们能在已有的知识上进一步学习提高,教师只是点播和引导者。
3.本课在设计时对教材也进行了适当改动。例题方面考虑到数_时代,学生对胶卷已渐失兴趣,所以改为学生比较熟悉的乒乓球为体裁。另一方面,充分挖掘练习的作用,为知识的落实打下轧实的基础,为学生今后的进一步学习做好铺垫。
元一次方程教案 篇二
教学目标
1、进一步经历用方程组解决实际问题的过程,体会方程组是刻画现实世界的有效数学模型;
2、会用列表的方式分析问题中所蕴涵的数量关系,列出二元一次方程组;
3、培养分析问题、解决问题的能力,进一步体会二元一次方程组的应用价值。
教学难点
借助列表分问题中所蕴含的数量关系。
知识重点
用列表的方式分析题目中的各个量的'关系。
教学过程
(师生活动)设计理念
创设情境最近几年,全国各地普遍出现了夏季用电紧张的局面,为疏导电价矛盾,促进居民节约用电、合理用电,各地出台了峰谷电价试点方案。
电力行业中峰谷的含义是用山峰和山谷来形象地比喻用电负荷特性的变化幅度一般白天的用电比较集中、用电功率比较大,而夜里人们休息时用电比较小,所以通常白天的用电称为是高峰用电,即8:00~22:00,深夜的用电是低谷用电即22:00~次日8:00.若某地的高峰电价为每千瓦时0.56元;低谷电价为每千瓦时。28元八月份小彬家的总用电量为125千瓦时,总电费为49元,你知道他家高峰用电量和低谷用电量各是多少千瓦时吗?
学生独立思考,容易解答,以一道生活热点问题引入,具有现实意义,激发学生学习兴趣,同时培养学生节约、合理用电的意识。
理解题意是关健,通过该题,旨在培养学生的读题能力和收集信息能力。
探索分析
解决问题(出示例题)如图,长青化工厂与A,B两地有公路、铁路相连,这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地,公路运价为1.5元(吨·千米),铁路运价为1.2元(吨·千米),这两次运输共支出公路运费15000元,铁路运费97200元,这批产品的销售款比原料费与运输费的和多多少元?
(图见教材115页,图8.3-2)
学生自主探索、合作交流。
设问1.如何设未知数?
销售款与产品数量有关,原料费与原料数量有关,而公路运费和铁路运费与产品数量和原料数量都有关,因此设产品重x吨,原料重y吨。
设问2.如何确定题中数量关系?
列表分析
产品x吨
原料y吨
合计
公路运费(元)
铁路运费(元)
价值(元)
由上表可列方程组
解这个方程组,得
因为毛利润-销售款-原料费-运输费
所以这批产品的销售款比原料费与运输的和多1887800元。
引导学生讨论以上列方程组解决实际问题的
学生讨论、分析:合理设定未知数,找出相等关系。本例所涉及的数据较多,数量关系较为复杂,具有一定挑战性,能激发学生探索的热情。
通过讨论让学生认识到合理设定未知数的愈义。
借助表格辅助分析题中较复杂的数量关系,不失为一种好方法。
课堂练习
反馈调控某瓜果基地生产一种特色水果,若在市场上每吨利润为1000元;经粗加工后销售,每吨利润增为4500元;经精加工后销售,每吨利润可达7500元。一食品公司
购到这种水果140吨,准备加工后上市销售,该公司的加工能力是:每天可以精加工6吨或者粗加工16吨,但两种加工方式不能同时进行,受季节等条件限制,公司必须将这批水果全部销售或加工完毕,为此公司研制二种可行的方案:
方案一:将这批水果全部进行粗加工;
方案二:尽可能多对水果进行精加工,没来得及加工的水果在市场上销售;
方案三:将部分水果进行精加工,其余进行粗加工,并恰好15天完成。
你认为选择哪种方案获利最多?为什么?
学生合作讨论完成
选择经济领城问题让学生展开讨论,增强市场经济意识和决策能力,同时巩固二元一次方程组的应用。
小结与作业
小结提高
1、在用一元一次方程组解决实际问题时,你会怎样设定未知数,可借助哪些方式辅助分析问题中的相等关系?
2、小组讨论,试用框图概括“用一元一次方程组分析和解决实际问题”的基本过程。
学生思考、讨论、整理。
这是第一次比较完整地用框图反映实际问题与二元一次方程组的关系。
让学生结合自己的解题过
程概括整理,帮助理解,培养模
型化的思想和应用数学于现实
生活的意识。
布置作业16、必做题:教科书116页习题8.3第2、6题。
17、选做题:教科书117页习题8.3第9题。
18、备19、选题:
(1)一批蔬菜要运往某批发市场,菜农准备租用汽车公司的甲、乙两种货车,已知过去两次租用这两种货车的记录如下表所示。
甲种货车(辆)乙种货车(辆)总量(吨)
第1次
4528.5
第2次
3627
这批蔬菜需租用5辆甲种货车、2辆乙种货车刚好一次运完,如果每吨付20元运费,问:菜农应付运费多少元?
(2)某学校现有学生数1290人,与去年相比,男生增加20%,女生减少10%,学生总数增加7.5%,问现在学校中男、女生各是多少?
本课教育评注(课堂设计理念,实际教学效果及改进设想)
本课探究的问题信息量大,数量关系复杂,未知数不容易设定,对学生来说是一种挑战,因此安排学生合作学习,学生先独立思考,自主探索,然后在小组讨论中合理设定未知数,借助表格分析题中的数量关系,列出方程组求得问题的解,在本节的小结中,让学生结合自己的解题过程概括整理实际问题与二元一次方程组的关系,并比较完整地用框图反映,培养模型化的思想。
同时本节向学生提供了社会热点问题、经济问题等现实、具有挑战性的、富有数学意义的学习素材,让学生展开数学探究,合作交流,树立数学服务于生活、应用于生活的意识。
教学目标 篇三
1、使学生会用加减法解二元一次方程组。
2、学生通过解决问题,了解代入法与加减法的共性及个性。
元一次方程教案 篇四
一、教学目标:
1、理解二元一次方程及二元一次方程的解的概念;
2、学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;
3、学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;
4、在解决问题的过程中,渗透类比的思想方法,并渗透德育教育
二、教学重点、难点:
重点:二元一次方程的意义及二元一次方程的解的概念
难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程
三、教学方法与教学手段:
通过与一元一次方程的比较,加强学生的类比的思想方法;
通过“合作学习”,使学生认识数学是根据实际的需要而产生发展的观点
四、教学过程:
1、情景导入:
新闻链接:桐乡70岁以上老人可领取生活补助,得到方程:80a+150b=902 880。
2、新课教学:引导学生观察方程80a+150b=902 880与一元一次方程有异同?得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程
做一做:
1、根据题意列出方程:
①小明去看望奶奶,买了5 kg苹果和3 kg梨共花去23元,分别求苹果和梨的单价,设苹果的单价x元/kg ,梨的单价y元/kg;
②在高速公路上,一辆轿车行驶
2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,可得方程:(2)课本P80练习
2、判定哪些式子是二元一次方程方程。
合作学习:活动背景爱心满人间——记求是中学“学雷锋、关爱老人”志愿者活动。
问题:参加活动的36名志愿者,分为劳动组和文艺组,其中劳动组每组3人,文艺组每组6人,团支书拟安排8个劳动组,2个文艺,单从人数上考虑,此方案是否可行?为什么?把x=8,y=2代入二元一次方程3x+6y=36,看看左右两边有没有相等?由学生检验得出代入方程后,能使方程两边相等,得出二元一次方程的解的概念:使二元一次方程两边的值相等的一对未知数的值叫做二元一次方程的一个解。
②③是方程的解,每个学生再找出方程的一个解,引导学生得到结论:一般情况下,二元一次方程有无数个解。
3、合作学习:给定方程x+2y=8,男同学给出y(x取绝对值小于10的整数)的值,女同学马上给出对应的x的值; 接下来男女同学互换。(比一比哪位同学反应快)请算的最快最准确的同学讲他的计算方法,提问:给出x的值,计算y的值时,y的系数为多少时,计算y最为简便?
出示例题:已知二元一次方程x+2y=8。
(1)用关于y的代数式表示x;
(2)用关于x的代数式表示y;
(3)求当x= 2,0,-3时,对应的y的值,并写出方程x+2y=8的三个解(当用含x的一次式来表示y后,再请同学做游戏,让同学体会一下计算的速度是否要快)
4、课堂练习:
(1)已知:5xm-2yn=4是二元一次方程,则m+n=;
(2)二元一次方程2x-y=3中,方程可变形为y=当x=2时,y=;
5、你能解决吗?小红到邮局给远在农村的爷爷寄挂号信,需要邮资3元8角,小红有票额为6角和8角的邮票若干张,问各需要多少张这两种面额的邮票?说说你的方案。
6、课堂小结:
(1)二元一次方程的意义及二元一次方程的解的概念(注意书写格式);
(2)二元一次方程解的不定性和相关性;
(3)会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。
7、布置作业:
(1)教材P82;
(2)作业本,教学设计意图:依照课程标准,通过分析教材中教学情境设计和例习题安排的意图,在此基础上依据学生实际,制订了本堂课的教学目标,教学重点和难点,课堂教学的设计始终围绕这教学重点和难点展开,在充分理解教材编写意图、教学要求和教学理念的基础上,根据学生实际,从学生的已有经验出发,创设了教学情境:关心老人,突出情感主线,并贯穿整个教学,并对教学内容进行适当的重组、补充和加工等,创造性地使用了教材,所选择的例习题都体现实际问题数学化的思想,让学生感受到数学的魅力,这两个方面的设计贯穿整堂课,把知识内容和情感体验自然连贯起来。
其次,在教学过程设计中,体现了让学生展示解决问题的思维过程,通过几个合作学习,激发学生主动去接触问题,从而达到解决问题的目的,重视学生学习过程中的自我评价和生生间的相互评价,关注学生对解题思路回顾能力的培养。
二元一次方程概念的教学中,通过与一元一次方程的类比的方法,使得学生加深印象,在突破难点的设计上,通过游戏的形式激发学生的学习兴趣,并在选题时,通过降低例题的难度,使学生迅速掌握用关于一个未知数的代数式表示另一个字母的方法,体会运用这种方法的可使求二元一次方程求解更简便。
元一次方程组教学设计 篇五
教学目标
1.认识二元一次方程和二元一次方程组。
2.了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解。
重点、难点
重点:理解二元一次方程组的解的意义
难点:求二元一次方程的正整数解
教学过程
一、复习导入
什么是一元一次方程?“元”指什么?“次”指什么?
什么是方程的解?
设计意图:通过学生复习以前的内容,知道用元与次的含义,为这节课所学的二元一次方程组奠定基础。
二、观看视频
观看洋葱视频关于二元一次方程组的内容,通过熟悉的鸡兔同笼问题来引发思考。
视频内容
设计意图:用视频吸引学生注意力,引起学生的认知冲突,从而激发学生的学习兴趣和求知欲望,通过视频内容,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。
三、探究新知
根据视频内容归纳出二元一次方程的定义:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。
把两个二元一次方程合在一起,就组成了一个二元一次方程组。
提问:对比两个方程,你能发现它们之间的关系吗?
师生共同总结二元一次方程组的概念像这样方程组中有两个个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,像这样的方程组叫做二元一次方程组。
探究二元一次方程组的解:
满足x+y=10的值有哪些?请填入表中:
使二元一次方程两边相等的未知数的值,叫做二元一次方程的解,记作。
满足方程2x+y=16且符合问题的实际意义的x 、y的值如下表:
不难发现x=6,y=4既是x+y=10的解,也是2x+y=16的解,也就是说是这两个方程的公共解,我们把它们叫做方程组的解。
归纳二元一次方程组的解的定义:二元一次方程组中的两个方程的公共解叫做二元一次方程组的解。
思考:3x+y=10的解有多少个?一个解有几个数?正整数解有几个?
带着问题让学生观看洋葱数学视频二元一次方程组的解
视频内容
设计意图:现代数学教学论指出,数学知识的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过学习用坐标表示平移观察分析、独立思考、小组交流等活动,引导学生归纳。
四、例题讲解
例、若方程2x2m+3+3y3n-7=0是关于x、y的二元一次方程,求m+n的值。
例2、暴风雨即将来临,一群蚂蚁正忙着搬家。其中有大蚂蚁和小蚂蚁,已知大小蚂蚁总共有1 00只,小蚂蚁一次只能搬一粒食物,大蚂蚁一次能搬两粒,一场忙碌过后,洞里的160粒食物刚好一次被安全转移,求大小蚂蚁各有几只?
例3、
学生思考,试着解答,最后共同宣布答案。
设计意图:在例题讲解过程中,让学生充分活动起来,通过例题探究来进行总结,不要让学生死记硬背,重点在理解,会灵活运用。
五、随堂练习
1.下列方程中,是二元一次方程的是( )
A.3x-2y=4z B.6xy+9=0
C.+4y=6 D.4x=
2.下列方程组中,是二元一次方程组的是( )
A. B.
C. D.
3.在方程(k-2)x2+(2-3k)x+(k+1)y+3k=0中,若此方程为关于x,y的二元一次方程,则k值为( )
A.-2 B.2或-2 C.2 D.以上答案都不对
4.二元一次方程x-2y=1有无数多个解,下列四组值中不是该方程的解的是( )
A、 B、 C、 D、
5.二元一次方程组的解为( )
A. B. C. D.
6、为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有( )
A.1种B.2种C.3种D.4种
设计意图:几道练习题由浅入深、由易到难、各有侧重,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,升华知识
六、拓展延伸
1.有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨,设一辆大货车一次可以运货x吨,一辆小货车一次可以运货y吨,根据题意所列方程组正确的是( )
A. B.
C. D.
2.甲、乙两人共同解方程组由于甲看错了方程①中的a,得到方程组的解为乙看错了方程②中的b,得到方程组的解为试计算a2 016+(-b)2 017.
设计意图:这个环节是巩固本课知识点,通过设置练习,来检测学生的掌握情况,在这部分的设计中,主要是发挥学生作为教学主体的主动性,让学生感受学习的乐趣和成功的喜悦。
七、课堂小结
以提问进行:
(1)、二元一次方程(组)的特征是什么?
(2)、二元一次方程组的解要满足什么条件?
设计意图:通过共同小结使学生归纳、梳理总结本节的知识、技能、方法,将本课所学的知识与以前所学的知识进行紧密联结,再一次突出本节课的学习重点,改善学生的学习方式。有利于培养学生数学思想、数学方法、数学能力和对数学的积极情感。同时为以后的学习作知识储备。
八、教学反思
1、概念课教学模式:本节课的主要内容是二元一次方程(组)的有关概念,设计时按照“实例研究,初步体会——比较分析,把握实质——归纳概括,形成定义——应用提高,发展能力”的思路进行,让学生体会到是因为“需要”而学习新知识,逐步渗透应用意识。
2、类比法的运用:二元一次方程及其解的意义类比一元一次方程学习,一方面加深学生对于方程中“元”与“次”的理解,另一方面易于理清一元一次方程与二元一次方程“解”的相关知识的异同,同时为二元一次方程组相关概念扫清障碍。
3、分层递进,循环上升:学生对知识的理解,教师对学生的要求,都是由低到高,逐步提升,题目的设计从单一知识点的直接运用,逐渐到多个知识点的灵活运用,给学生设计必要的台阶,使其一步步向前,最终达到教学目标。
元一次方程教案 篇六
一、教学目标
1、通过与一元一次方程的比较,能说出二元一次方程的概念,并会辨别一个方程是不是二元一次方程;
2、通过探索交流,会辨别一个解是不是二元一次方程的解,能写出给定的二元一次方程的解,了解方程解的不唯一性;
3、会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。
过程与方法目标:
经历观察、比较、猜想、验证等数学学习活动,培养分析问题的能力和数学说理能力;
情感与态度目标
1、通过与一元一次方程的类比,探究二元一次方程及其解的概念,进一步培养运用类比转化的思想解决问题的能力;
2、通过对实际问题的分析,培养关注生活,进一步体会方程是刻画现实世界的有效数学模型,培养良好的数学应用意识。
二、重点、难点
重点:二元一次方程的概念及二元一次方程的解的概念。
难点
1、了解二元一次方程的解的不唯一性和相关性。即了解二元一次方程的解有无数个,但不是任意的两个数是它的解。
2、把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。
三、教学方法与教学手段
1、 通过创设问题情境,让学生在寻求问题解决的过程中认识二元一次方程,了解二元一次方程的特点,体会到二元一次方程的引入是解决实际问题的需要。
2、 通过观察、思考、交流等活动,激发学习情绪,营造学习气氛,给学生一定的时间和空间,自主探讨,了解二元一次方程的解的不唯一性和相关性。
3、 通过学练结合,以游戏的形式让学生及时巩固所学知识。
四、教学过程
创设情境 导入新课
1、一个数的3倍比这个数大6,这个数是多少?
2、写有数字5的黄卡和写有数字2的蓝卡若干张,问黄卡和蓝卡各取几张,才能使取到的卡片上的数字之和为22?
思考:这个问题中,有几个未知数?能列一元一次方程求解吗?如果设黄卡取x张,蓝卡取y张,你能列出方程吗?
3、在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米。如果设轿车的速度是a千米/时,卡车的速度是b千米/时,你能列出怎样的方程?
师生互动 探索新知
1、 发现新知
引导学生观察所列的方程: 这两个方程有哪些共同特征?这些特征与一元一次方程比较,哪些是相同的,哪些是不同的?你能给它们取个名字吗?
根据它们的共同特征,你认为怎样的方程叫做二元一次方程? (二元一次方程的定义:含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程。)
2、 巩固新知
判断下列各式是不是二元一次方程(1) (2) (3) (4)
3、师生互动 再探新知
(1)什么是方程的解?(使方程两边的值相等的未知数的值,叫做方程的解。)
(2)你能给二元一次方程的解下一个定义吗?(使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的一个解。)
若未知数设为,记做 ,若未知数设为,记做
4、 检验新知
(1)检验下列各组数是不是方程 的解:(学生感悟二元一次方程解的不唯一性)
(2)你能写出方程x-y=1的一个解吗?(再一次让学生感悟二元一次方程的解的不唯一性)
5、自我挑战 三探新知
有3张写有相同数字的蓝卡和2张写有相同数字的黄卡,这五张卡片上的数字之和为10。设蓝卡上的数字为x ,黄卡上的数字为y ,根据题意列方程。
请找出这个方程的一个解,并写出你得到这个解的过程。
学生在解二元一次方程的过程中体验和了解二元一次方程解的不唯一性。
五、 总结
比较一元一次方程和二元一次方程的相同点和不同点
相同点: 方程两边都是整式,含有未知数的项的次数都是一次。
如果一个方程含有两个未知数,并且所含未知项都为1次方,那么这个整式方程就叫做二元一次方程,有无穷个解,若加条件限定有有限个解。
元一次方程教案 篇七
【教学目标】
【知识目标】
了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解。
【能力目标】
通过讨论和练习,进一步培养学生的观察、比较、分析的能力。
【情感目标】
通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识。
【重点】
二元一次方程组的含义
【难点】
判断一组数是不是某个二元一次方程组的解,培养学生良好的数学应用意识。
【教学过程】
一、引入、实物投影
1、师:在一望无际呼伦贝尔大草原上,一头老牛和一匹小马驮着包裹吃力地行走着,老牛喘着气吃力地说:“累死我了”,小马说:“你还累,这么大的个,才比我多驮2个”老牛气不过地说:“哼,我从你背上拿来一个,我的包裹就是你的2倍!”,小马天真而不信地说:“真的?!”同学们,你们能否用数学知识帮助小马解决问题呢?
2、请每个学习小组讨论(讨论2分钟,然后发言)
这个问题由于涉及到老牛和小马的驮包裹的两个未知数,我们设老牛驮x个包裹,小马驮y个包裹,老牛的包裹数比小马多2个,由此得方程x-y=2,若老牛从小马背上拿来1个包裹,这时老牛的包裹是小马的2倍, 得方程:x+1=2(y-1)
师:同学们能用方程的方法来发现、解决问题这很好,上面所列方程有几个未知数?含未知数的项的次数是多少? (含有两个未知数,并且所含未知数项的次数是1)
师:含有两个未知数,并且含未知数项的次数都是1的方程叫做二元一次方程
注意:这个定义有两个地方要注意
①、含有两个未知数;
②、含未知数的次数是一次
练习(投影)
下列方程有哪些是二元一次方程
+2y=1 xy+x=1 3x-=5 x2-2=3x
xy=1 2x(y+1)=c 2x-y=1 x+y=0
二、议一议、
师:上面的方程中x-y=2,x+1=2(y-1)的x含义相同吗?y呢?
师:由于x、y的含义分别相同,因而必同时满足x-y=2和x+1=2(y-1),我们把这两个方程用大括号联立起来,写成
x-y=2
x+1=2(y-1)
像这样含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。
如: 2x+3y=3 5x+3y=8
x-3y=0 x+y=8
三、做一做、
1、 x=6,y=2适合方程x+y=8吗?x=5,y=3呢?x=4,y=4呢?你还能找到其他x,y值适合x+y=8方程吗?
2、 X=5,y=3适合方程5x+3y=34吗?x=2,y=8呢?
你能找到一组值x,y同时适合方程x+y=8和5x+3y=34吗?
x=6,y=2是方程x+y=8的一个解,记作 x=6 同样, x=5
y=2 y=3
也是方程x+y=8的一个解,同时 x=5 又是方程5x+3y=34的一个解,
y=3
四、随堂练习(P103)
五、小结:
1、 含有两未知数,并且含有未知数的项的次数是一次的整式方程叫做二元一次方程。
2、 二元一次方程的解是一个互相关联的两个数值,它有无数个解。
3、 含有两个未知数的两个二元一次方程组成的一组方程,叫做二元一次方程组,它的解是两个方程的公共解,是一组确定的值。
六、教后感:
七、自备部分
元一次方程组教学设计 篇八
一、教材分析
本课内容是在学生掌握了二元一次方程组有关概念之后的学习内容,用代入消元法解二元一次方程组是学生接触到的解方程组的第一种方法,是解二元一次方程组的方法之一,消元体现了“化未知为已知”的重要思想,它是学习本章的重点和难点。学完以后可以帮助我们解决一些实际的问题,也是为了今后学习函数、线性方程组及高次方程组奠定了基础。
二、教学目标
1、使学生学会用代入消元法解二元一次方程组。
2、理解代入消元法的基本思想;了解化“未知为已知”的转化过程,体会化归思想。
三、教学重难点
1、重点:用代入法解二元一次方程组。
2、难点:在“消元”的过程中能够判断消去哪个未知数,使得解方程组的运算转为较简便的过程。
四、教学过程
(1)复习引入
在上节课中我们学习了二院一次方程组的有关概念,并学习了二元一次方程组的概念还学会判断一组值是否是二元一次方程组的解的问题,同学们还记得二元一次方程组和二元一次方程组的解的概念吗?追问二元一次方程组既然有解那么它们的解又怎么求呢?
设计意图:让学生复习巩固二元一次方程组和二元一次方程组解的概念,追问其他一个抛砖引玉的效果,激起学生的学习兴趣,引出课题。
(2)探究新知
此过程通过播放洋葱视频中的代入消元法片段视频,播放致列出二元一次方程组和一元一次后点击暂停,先让学生考虑想清楚两个问题。
一个问题是为什么能用一元一次方程解决的实际问题我们要用二元一次方程组来解决?第二个问题观察二元一次方程组和一元一次方程组之间有何异同?学生想清楚这两个问题后,渗透消元的思想,然后继续播放视频让学生知道二元一次方程组完整的解题过程,并在每一步做出相应的解释,怎么变化而来。
播放视频完后先让学生自主总结归纳解二元一次方程组的基本步骤,教师引导总结。接着完成配套的3个习题,强化训练。
(3)例题讲解
让学生尝试解答
设计意图:让学生通过例1和例2的对比,引出如何选择变化有利于计算的问题。
预想大部分学生例2会存在这样的问题到底选择哪个方程变形,当学生做出例1,犹豫例2时,提出这样两个问题:
(1)在解二元一次方程组的步骤中变形的过程我们应当如何变形?把一个方程变形为用含x的式子表示y(或含y的式子表示x)
(2)选择哪个方程变形比较简便呢?
再一次激起学生的学习兴趣,接着播放洋葱视频继续代入消元法片段视频,
让学生清楚的知道在不同的二元一次方程组中在变形的过程选择那一个方程,选择那一个未知数变形能简便的进行运算。
五、课堂小结
1、这节课你学到了哪些知识和方法?
2、你还有什么问题或想法需要和大家交流分享?
六、课后作业布置:
xxx
七、课后反思
通过洋葱视频辅助教学,使得学生容易体会到“消元”思想的渗透,学生能够学会规范解题。通过视频的讲解能够准确的选择要变形的方程,如果是传统的教学方式可能会出现很多学生不理解的地方,但通过洋葱数学短小精辟的视频讲解一下子让学生理解透!
元一次方程教案 篇九
一、复习引入
1、已知方程x2-ax-3a=0的一个根是6,则求a及另一个根的值。
2、由上题可知一元二次方程的系数与根有着密切的关系,其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?
3、由求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的两根为x1=-b+b2-4ac2a,x2=-b-b2-4ac2a观察两式右边,分母相同,分子是-b+b2-4ac与-b-b2-4ac两根之间通过什么计算才能得到更简洁的关系?
二、探索新知
解下列方程,并填写表格:
方程 x1 x2 x1+x2 x1?x2
x2-2x=0
x2+3x-4=0
x2-5x+6=0
观察上面的表格,你能得到什么结论?
(1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q之间有什么关系?
(2)关于x的方程ax2+bx+c=0(a≠0)的两根x1,x2与系数a,b,c之间又有何关系呢?你能证明你的猜想吗?
解下列方程,并填写表格:
方程 x1 x2 x1+x2 x1?x2
2x2-7x-4=0
3x2+2x-5=0
5x2-17x+6=0
小结:根与系数关系:
(1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q的关系是:x1+x2=-p,x1?x2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零)
(2)形如ax2+bx+c=0(a≠0)的方程,可以先将二次项系数化为1,再利用上面的结论。
即:对于方程 ax2+bx+c=0(a≠0)
∵a≠0,∴x2+bax+ca=0
∴x1+x2=-ba,x1?x2=ca
(可以利用求根公式给出证明)
例1 不解方程,写出下列方程的两根和与两根积:
(1)x2-3x-1=0 (2)2x2+3x-5=0
(3)13x2-2x=0 (4)2x2+6x=3
(5)x2-1=0 (6)x2-2x+1=0
例2 不解方程,检验下列方程的解是否正确?
(1)x2-22x+1=0 (x1=2+1,x2=2-1)
(2)2x2-3x-8=0 (x1=7+734,x2=5-734)
例3 已知一元二次方程的两个根是-1和2,请你写出一个符合条件的方程(你有几种方法?)
例4 已知方程2x2+kx-9=0的一个根是-3,求另一根及k的值。
变式一:已知方程x2-2kx-9=0的两根互为相反数,求k;
变式二:已知方程2x2-5x+k=0的两根互为倒数,求k
三、课堂小结
1、根与系数的关系。
2、根与系数关系使用的前提是:
(1)是一元二次方程;
(2)判别式大于等于零。
四、作业布置
1、不解方程,写出下列方程的两根和与两根积。
(1)x2-5x-3=0 (2)9x+2=x2 (3)6x2-3x+2=0
(4)3x2+x+1=0
2、已知方程x2-3x+m=0的一个根为1,求另一根及m的值
3、已知方程x2+bx+6=0的一个根为-2,求另一根及b的值
情景设置: 篇十
小明买了两份水果,一份是3kg苹果、2kg香蕉,共用去13.2元;另一份是2kg苹果、5kg香蕉,共用去19.8元。设苹果x元/kg,香蕉y元/kg.列出方程。
新课讲解:
列出方程组
1、解方程组
分析:关键的`出方程〈1〉中的2y与方程〈2〉中的-2y互为相反数。想象出如果相加两个方程,会是什么结果?
板演:
解:〈1〉+〈2〉得:
4x=6
x=
把x= 代入〈1〉得
+2y=1
解出这个方程,得
y=
所以原方程组的解是
2、解方程组
通过议一议,让学生都有感觉消去含x或y的项都可以,但哪个更简便?
解:〈1〉 3,得
15x-6y=12 〈3〉
〈2〉 2,得
4x-6y=-10 〈4〉
〈3〉-〈4〉,得
11x=22
x=2
将x=2代入〈1〉,得
5 2-2y=4
y=3
所以原方程组的解是
加减消元法:把方程组的两个防城(或先作适当变形)相加或相减,消去其中一个未知数,把解二元一次方程组转化为解一元一次方程。
练一练:
解方程组
小结:
加减消元法关键是如何消元,化二元为一元。
先观察后确定消元。
教学素材:
A组题:解下列方程组:
(1)
(2)
(3)
(4)
(5)
B组题:运用转化的思想方法,你能解下面的三元一次方程组吗?
(1)
(2)
学生读题,议一议
学生想一想,如感到困难则看道简单题。
由学生观察,如何求出x,y的值,学生再讨论。
试一试。学生口述。
老师板演
得到一元一次方程
学生再观察,议一议
①消去哪个未知数
②怎样消去?
P112 1(1)(2)(3)(4)
作业习题11.3 P112 1(3)(4) 3 , 4
它山之石可以攻玉,以上就是众鼎号为大家整理的10篇《2023年七年级数学二元一次方程组教案》,能够帮助到您,是众鼎号最开心的事情。