人教版五年级下册数学教案【精选3篇】
培养学习类比能力,从已有知识——面积单位引发思考,初步了解体积单位和面积单位之间的联系与区别。这里给大家分享一些关于人教版五年级下册数学教案,方便大家学习。下面是众鼎号为大伙儿带来的3篇《人教版五年级下册数学教案》,亲的肯定与分享是对我们最大的鼓励。
人教版五年级数学下册教案 篇一
一、教学内容
课本P38~40。
二、教学目标
1.知识与技能
使学生理解体积的意义;认识常用的体积单位:立方米、立方分米、立方厘米。
2.过程与方法
让学生经历探索体积和体积单位的过程,发展学生的空间观察能力和培养学生的推理能力。
3.情感、态度与价值观
使学生形成空间观念,体验所学知识与现实生活的联系,使其能运用所学知识解决生活中简单的问题,从中获得价值体验。
三、重点难点
1.教学重点
体积概念的建立以及对体积计量方法的理解。
2.教学难点
感知物体的体积以及建立体积单位的概念。
四、教学用具
1立方米、1立方分米、1立方厘米的模型;水杯,水,沙子,大小石块(用线系好),木块等;10个1立方厘米的正方体。
五、教学设计
(一)铺垫选择研究方向
1.引入:在装有半杯蓝色水的玻璃杯中(先在水面处做个记号)放入一块石块。
2.观察思考。
(视频脚本三:长方体和正方体4.土豆放入水杯的动画片。)
(1)水面的位置发生了什么变化?杯中的水为什么会上升?
(2)杯中的水为什么会上升,这就是我们今天要研究的内容。
(二)发现并认识体积
1.想一想:是不是所有的物体都占有一定的空间?用桌上提供的物品验证。有:木块、沙子、火柴盒、工具箱、石块、玻璃球……
2.教师巡视与学生一起探讨。
3.提问汇报。
(1)你们是怎样进行实验的?
(2)你们在实验过程中观察到了什么现象?
(3)学生动手操作。
(4)学生回答。
生:我们拿出自带的装满细沙的杯子,先把细沙倒在纸上,把一块木块放入杯中,然后再把细沙倒入杯中,沙子不能全部倒入杯中,有剩余部分,因为木块占有一定空间。
4.表象再现。
(1)闭眼回忆刚才验证物体的样子。
(2)学生闭眼想象。
5.抽象体积的概念。
(1)物体所占的空间一样吗?
(2)学生回答。
生:我们先把小石块放入杯中,然后在水面上升处作个记号。取出石块,再放入大一些的石块,发现水面比原来的水面高了。
(3)为什么上升的水面会比原来的高?
(4)学生回答。
生:因为大石块占的空间大,所以上升的水面比原来的高。也就是说,物体的大小不一样,所占空间的大小也不一样。
6.看来物体所占空间有大有小,物体所占空间的大小就是物体的体积。
(1)什么叫物体的体积?
(2)学生回答:物体所占空间的大小叫做物体的体积。
7.看书质疑。
(三)自我探索体积单位
1.要知道一个物体的体积有多大,或者一个物体的体积比另一个物体的体积大多少或少多少,该怎么办?这就需要计量,计量体积要用体积单位。【 】
2.猜想。
你听说过哪些体积单位?
(1)常用的体积单位有哪些?
(2)汇报:将你们学习到的说给大家听听。
(3)学生回答。
棱长1厘米的正方体,体积是1立方厘米;
棱长1分米的正方体,体积是1立方分米;
棱长1米的正方体,体积是1立方米。
(视频脚本三:第三单元长方体和正方体5.视频“1立方米的空间有多大”的演示)
3.估量体积单位。
(1)1立方厘米的空间有多大?比画比画。
(2)什么物体的体积大约接近1立方厘米?
(3)1立方分米有多大?比画比画。
(4)什么物体的体积接近1立方分米?
(5)1立方米呢?
(6)1立方米有多大?利用一些工具体验大小,你们钻进去试一试。(准备3个米尺)
4.填入适当的单位。
(1)橡皮的体积大约是5()。
(2)桌子的体积大约是240()。
5.质疑。
(四)体积的初步计量
1.教师演示(学生跟着摆)。
(1)出示2个1立方厘米的正方体,拼成一个长方体,它的体积是多少?为什么?
(2)出示6个1立方厘米的正方体,拼成一个长方体,它的体积是多少?为什么?
(3)(改变长方体的摆法)这是长方体吗?它的。体积是多少?为什么仍是6立方厘米?
(4)(再改变形状)形状变了,体积有没有变?为什么?
(5)为什么不管摆什么形状,体积都是6立方厘米?
2.学具操作。
(1)你们每人桌上都放有10个1立方厘米的正方体,现在请你们摆一个体积是9立方厘米的长方体,想想怎么摆?
(2)为什么所摆的长方体的体积都是9立方厘米?
3.归纳概括。
(四人一组讨论)根据刚才所摆的图形,你怎么知道这些物体的体积是多少的?
(五)巩固练习
1.填空
常用的体积单位有()、()、()。
常用的面积单位有()、()、()。
常用的长度单位有()、()、()。
棱长()的正方体的体积是1立方厘米。
棱长()的正方体的体积是1立方分米。
棱长()的正方体的体积是1立方米。
2.在括号里填上适当的单位。
(1)一根粉笔的体积大约是10()。
(2)讲台桌的体积大约是0.4()。
(3)一本《新华字典》的体积大约是0.35()。
(4)一张信纸的面积大约是5()。
(5)一块城砖的体积大约是3()。
3.拼一拼,说说是由几个1立方厘米的正方体组成的?
(六)全课总结
通过这节课你有哪些心得和体会?你还有哪些问题?
(七)板书设计
体积和体积单位
意义:物体所占空间的大小叫做物体的体积。
单位:立方厘米、立方分米、立方米。
计量:要看这个物体含有多少个体积单位。
人教版五年级数学下册教案 篇二
一、教学目标:
1、认识和掌握长方体的特征,理解长、宽、高的概念。
2、能会计算长方体的棱长总和。
3、培养学生的观察能力、操作能力及分析综合和抽象概括的能力,发展学生的创新意识。
4、在学习的过程中,培养学生团结合作的精神。
二、教学重点:
掌握长方体的特征,认识长方体的长、宽、高。
三、教学难点:
初步建立“立体图形”的概念,形成表象。
四、教具准备:
多媒体教学设施及相关课件,长方体实物模型两个(其中一个两面是正方形的长方体)、长方体的框架一个。
五、学具准备:
学生每人准备一个长方体形状的纸盒和一把尺子。
六、教学过程:
一、导入课题:
师:今天,老师给同学们带了几位老朋友,同学们看,你们认识它们吗?(屏幕上显示:长方形、正方形、三角形、平行四边形和梯形)你们能说出它们的名称吗?
生:逐个说出长方形、正方形、三角形、平行四边形、梯形。
师:这些图形都是咱们前面所学过的平面图形,现在你们再看这些图形,和前面那些图形一样吗?(屏幕上显示:正方体、圆柱体、圆锥体、长方体。)
生:不一样。
师:(指着图)像这样的图形,就是立体图形,今天,我们一块来研究立体图形中的一种图形(屏幕上显示:一个长方体)长方体。(板书课题:长方体的认识)
二、探究新知:
1、面的认识:
师:根据同学们以前所学习的知识,谁能说说长方体的大概样子呢?
生:它的大概样子是长长的,方方的。
师:请同学们在这些图中,找出长方体(出示课件)第几个是长方体?
生:回答。
师:在日常生活中,你发现哪些物体是长方体?
生甲:烟盒,牙膏盒,药盒等。
生乙:电冰箱,收音机,微波炉等。
生丙:砖,床,衣柜,教室等。
师:在我们的生活中,有许许多多的物体是长方体,只要同学们仔细观察,就能发现很多很多。现在请同学们拿出自己准备的学具,跟着老师一块儿摸一摸(教师拿着长方体教具引导学生摸长方体的面)你摸到了什么?
生:我摸到了长方体的面。
师:它的面是怎样的?
生:是平平的。
师:这样平平的面到底有多少呢?请同学们注意观看屏幕(出示课件)。
生:6个面。
师:你们手中的学具也是6个面吗?数一数。
生:6个面。
师:对,这是我们对长方体的第一个发现,长方体有6个面。(板书:6个面。)这6个面到底有什么特征呢?请同学们再注意观看屏幕(逐个出示:上下两面重合,左右两面重合,前后两面重合。)
师:现在,你看到长方体哪两个面怎么样了呢?
生:上下两个面完全重合在了一起。
师:说明这两个面怎么样呢?
生:说明这两个面的形状、大小完全一样。
师:现在哪两个面又重合在了一起?
生:左右两个面完全重合到了一起。
师:说明左右两个面怎么样呢?
生:说明左右两个面大小完全一样。
师:接下来哪两个面会重合到一起呢?请同学们猜想一下,想出来了请举手。
生:前后两个面会重合到一起。
师:这位同学到底猜想的对不对呢?咱们一块来看大屏幕(显示:前后两个面重合。)这位同学猜想的对吗?
生:对。
师:通过刚才的观察,你发现长方体6个面都是什么形?
生:6个面都是长方形。
师:是不是所有的长方体6个面都是长方形呢?现在请同学们拿出自己的学具仔细观察一下。
生甲:我的长方体学具6个面都是长方形。
生乙:我的长方体学具4个面是长方形,有两个面是正方形。
师:一般情况下长方体6个面都是长方形,在特殊的情况下有两个面是正方形。
师:通过刚才的观察及电脑演示,我们就可以得到长方体面的特征。(师板书:6个面都是长方形,特殊情况下有两个相对的面是正方形),相对的两个面大小相同。现在请同学们齐读长方体面的特征。
生:齐读。
2、棱的认识:
师:(拿出教具边指边说)两个面相交的一条边,我们把它叫做长方体的棱。现在请同学们拿出长方体学具,用手摸一摸长方体的棱,你有什么感觉?
生:有割手的感觉。
师:看着棱,你发现了什么?
生:棱把相邻的两个面分开了。
师:长方体的棱有多少条呢?数一数你的学具。
生:12条。
师:(拿出长方体棱长框架,师引导学生有顺序地依次数出长方体棱长。)12条。这是我们的第二个发现,长方体有12条棱。(板书:12条棱)
师:现在,大家一块来研究长方体的棱有什么特征呢?请同学们拿出你手中的学具,边观察边用直尺测量,思考一个问题:1、长方体12条棱按长短可以分成几组?怎样分?带着这个问题,四个人为一小组,边讨论边分。(师巡视)
师:讨论好的小组请举手。
生甲:我们小组把12条棱分成了三组,最长的'4条分成了一组,较长的4条分成了一组,最短的4条分成了一组。每组棱长度相等。
生乙:我们小组分成了两组:最长的4条分成一组,剩下的8条分成一组。
(师:到底这两组同学分的对不对呢?请同学观看大屏幕,显示1:最长4条分成一组,最短4条分成一组,剩下4条分成一组。有两个面是正方形的分成。显示2:最长的4条分成一组,剩下的8条分成一组。)这两组同学分的对吗?
生:都对。
师:12条棱一般情况下分成3组,每组有4条棱长度相等。特殊情况下分成2组,一组有4条棱长度相等,另一组有8条棱长度相等。相等的棱是相对的,也可以说成相对的棱的长度相等。长方体的棱的特征我们就可以总结为(师边说边板书:相对的棱的长度相等。)
3、顶点的认识:
师:(拿出教具边说边指)三条棱相交的这一个点,我们把它叫做长方体的顶点。拿出你们的学具,摸摸长方体的顶点,有什么感觉?
生:有扎手的感觉。
师:这样的顶点有多少个呢?现在请同学们观看屏幕(显示:长方体的顶点)数一数,长方体有几个顶点?
生:8个顶点。
师:是不是所有的长方体都有8个顶点呢?拿出你们的学具数一数。
生:8个顶点。
师:对,第三个发现,长方体有8个顶点。(师板书:8个顶点)
师:(出示课件)相交于一个顶点的三条棱的长度相等吗?(边说边用鼠标指三条棱)
生:不相等。
师:相交于一个顶点的这三条棱的长度分别叫做长方体的长、宽、高。(边说边用鼠标指长、宽、高)。
师:习惯上,长方体的位置固定以后,(出示学具边说边用手指)我们把底面中较长的棱叫做长,较短的棱叫做宽,和底面垂直的棱叫做高。现在,请同学们看着老师的学具,老师用手指,同学们说出它的长、宽、高。(师把教具竖放、横放、侧放、让学生说出长、宽、高)
师:实际上,长方体的长、宽、高是根据长方体所放的位置的不同而改变的。现在咱们来做一些练习题。(电脑出示:练习题1)
三、课堂巩固
判断:(正确的在括号里面画“√”,错误的在括号里画“×”。)
(1)长方体的六个面一定是长方形。( )
(2)长方体有6个面,12条棱,8个顶点。( )
八、板书设计:
长方体的认识
6个面都是长方形(特特殊情况有两个面是正方形)
相对的面大小相等
(12条)棱:相对的棱的长度相等
(8个)顶点
小学五年级数学下册教案 篇三
教学目标
1、知识与技能
让学生在条形统计图的基础上认识折线统计图,进一步体会统计在现实生活中的作用,体会数学与生活实际的密切关系。
2、过程与方法
使学生认识折线统计图的特点,会看折线统计图,并能根据数据进行合理分析,培养学生的合作意识和实践能力。
3、情感态度与价值观
能从统计图中发现数学问题、解决问题,并能体会统计知识在生活中的意义和作用。
教学过程
(一)情境引入
师:同学们都喜欢机器人吗?同学们可以自己制作,锻炼动手能力。我们了解到xx~xx中国青少年机器人参赛队伍的参赛队伍支数情况,于是做了一份统计图。出示条形统计图。你能从中获得什么信息?回忆条形统计图的特点。
(二)探究新知
1、为了更明显的看出各年参观科技馆的人数增减情况,我们来学习一种新的统计图。
出示折线统计图(板书标题:折线统计图)
说一说它的横轴、纵轴分别表示什么?
统计图上的各点又表示什么意思?
2、分析折线统计图
小组讨论:
(1)中国青少年机器人参赛队伍的数量有什么变化?你有什么感想?
(2)折线统计图有什么特点?
小组交流汇报讨论结果。
师带领学生从点和线两方面分析总结折线统计图的特点。
师问:在折线统计图中我们是用什么来表示数据?(板书:点表示数量的多少)
我们明明用点来表示数量的多少,而它却叫做折线统计图你,说明这些线段中肯定藏着一些奥秘。
师问:观察一下折线统计图里面的各条线段,它们有什么作用?
(板书:线表示数量的增减变化)
3、中国已经进入老龄化社会,尤其是上海,早在20世纪70年代末就进入了老龄化。出生人口数和死亡人口数是重要的影响因素。下面是一个小组调查的xx—xx年上海出生人口和。小组讨论:如果要看出生人口数和死亡人口数变化情况,该怎么办?
分别出示上海出生人口数和死亡人口数统计图。
4、提问:请比较出生人口数和死亡人口数变化情况。怎样才能更方便地比较呢?
(1)出示复式折线统计图,指出复式折线统计图的标题和图例在制图中一定要有。
(2)复式折线统计图与单式折线统计图与什么不同?
复式折现统计图可以更方便的分析两个数量增减变化情况。
5、根据复式折线统计图回答问题
(1)观察复式折线统计图,你说说上海出生人口数、死亡人口数的变化趋势吗?
(2)每年的出生人口数和死亡人口数之间存在什么关系?
(3)结合全国xx—xx年出生人口数和死亡人口数统计表,你能发现什么共同的规律吗?(如下表)
略
三、知识巩固
1、甲乙两地月平均气温见如下统计图。
(1)根据统计图,你能判断一年气温变化的趋势吗?
1、2月份气温最低,从3月份气温上升,5~8月份气温最高,从8月份开始,气温下降。
(2)有一种树莓的生长期为5个月,最适宜的生长温度为7~10之间,这种植物适合在哪个地方种植?
这种植物在甲地种植比较合适。
2、陈明每年生日时都测量体重。下图是他8~14岁之间测量的体重与全国同龄男生标准体重对比的统计图。
(1)陈明的体重在哪一年比上一年增长的幅度最大?
14岁比13岁增长的幅度最大。
(2)说一说陈明的体重与标准体重比变化的情况。
四、课堂小结
重点:了解折线统计图的特点,会看折线统计图,能根据折线统计图对数据进行简单的分析。
难点:弄清条形统计图与折线统计图的区别。
以上就是众鼎号为大家带来的3篇《人教版五年级下册数学教案》,希望对您的写作有所帮助。
下一篇:拿来主义教案(优秀8篇)