《分数除以分数》教学设计【优秀10篇】
作为一位兢兢业业的人民教师,常常要写一份优秀的教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。那要怎么写好教学设计呢?众鼎号的小编精心为您带来了10篇《《分数除以分数》教学设计》,可以帮助到您,就是众鼎号小编最大的乐趣哦。
教材简介: 篇一
本课是在学习了分数除以整数和整数除以分数的基础上进行的,学生已经初步感受到一个数除以另一个数时要变除为乘,去乘除数的倒数。本课则是进一步丰富分数除法的内涵,扩展到分数除以分数,并由此统一分数除法的法则。教材意图让学生利用知识的迁移得出分数除以分数的计算方法,并用一些直观的手段来验证此思路是正确的。练习中,还安排了一些旨在探讨分数除法中的规律(当除数大于1、小于1或等于1时,商相应地小于、大于或等于被除数)的内容。
《分数除以分数》教学设计 篇二
教学目标:
1、理解分数除以分数计算法则的推导过程,掌握分数除以分数的计算方法。
2、在此基础上归纳出分数除法统一的运算法则。
3、教学过程中鼓励学生自觉运用化归的数学思想方法解决新问题。
教学过程:
一、复习引入,承前启后。
1、 口算。
6 9(算完指名说一说分数除以整数和整数除以分数的计算方法)
(板书:分数除以整数整数除以分数)
2、 师:这两种除法的计算方法好象有一种共同点,大家看出来了吗?(学生交流)
3、 师:对,都是化除为乘,用被除数乘除数的倒数。可如果是分数除以分数呢?
(板书:分数除以分数 )我们今天就来研究这一问题。
【设计意图:迅速唤醒学生的旧知,为知识的迁移创造一种条件。】
二、创设情境,推导算法。
1、出示例4:量杯里有升果汁,茶杯的容量是升。这个量杯里的果汁能倒满几个茶杯?(投影或挂图出示)
(1)指名列式:
(2)师:请同学们估计一下,能倒满几个茶杯?(学生发表意见)
可能出现的意见:
A、3杯。(==3)(板书)
B、凭感觉好象是3杯。
师:要是有量杯和茶杯就好了,倒一倒就可以知道结果。可现在没有,怎么办呢?能想出一个有说服力的方法吗?
【设计意图:让学生说出自己的第一感觉,是对学生主动思考的一种鼓励,但又不能只停留在猜测这一层次,要激励学生进一步找寻解决问题的方法,并以此来验证自己的猜测是否科学、合理。】
(3)学生讨论交流。
可能出现的方法:
A、化成整数计算。
升=900毫升 升=300毫升 900毫升300毫升=3,所以,=3
B、利用分数单位。
教学目标: 篇三
1、理解分数除以分数计算法则的推导过程,掌握分数除以分数的计算方法。
2、在此基础上归纳出分数除法统一的运算法则。
3、教学过程中鼓励学生自觉运用化归的数学思想方法解决新问题。
《分数除以分数》教学设计 篇四
教学内容:
苏教版义务教育教科书《数学》六年级上册第46页例4、练一练,第48页练习七第9~14题。
教学目标:使学生经历探索分数除以分数的计算方法的过程,理解并掌握分数除以分数的计算方法,能正确计算分数除以分数的试题。
使学生在探索分数除以分数计算方法的过程中,进一步理解分数除法的意义,体会数学知识之间的内在联系。
教学重点:
分数除以分数的计算方法。
教学准备:
多媒体课件。
教学过程:
一、复习引新
1、口算。
23÷2 14÷4 512÷10 310÷6
9÷310 4÷45 2÷314 1÷32
2、揭示课题:分数除以分数
二、教学例4
1、出示例4,学生读题,列式。
提问:这是已知什么,要求什么?用什么方法计算?
追问:为什么用除法计算?怎样列式?
2、引导探索:分数除以整数怎么算呢?
(1)请大家画图探索一下这个算式得多少?
各自在书上的长方形里分一分,画一画。
(2)指名到黑板上画一画,使大家清楚地看出是3瓶。
(3)讨论:分数除以整数,能不能用被除数乘除数的倒数来计算呢?
请大家计算一下它的积,看得数与我们画图的结果是不是一样?(一样)
得数相同,你能猜想到什么?
3、练习,验证猜想
完成练一练第1题:先再长方形中涂色表示,看看里有几个,有几个,再计算。
你发现了什么?
4、概括方法
联系前面学习的分数除以整数和整数除以分数的计算,你能说出分数除以分数的。计算方法吗?
根据学生的讨论,板书:
三、练习
1、做“练一练”第1题。
各自练习,并指名板演,练习后评议交流。
2、完成练习七第10题。
独立计算后,引导比较,启发思考:什么情况下,除得商比被除数小?什么情况下,除得的商比被除数大?
3、讨论练习七第11题。
引导:你能不计算,运用已经发现的规律直接填空吗?
4、讨论练习七第12题:
指出:交换被除数和除数,所得的商与原来的商互为倒数。
四、作业:
练习七第9、13、14题。
小学数学《分数除以分数》教学设计 篇五
本课是在学习了分数除以整数和整数除以分数的基础上进行的,学生已经初步感受到一个数除以另一个数时要变除为乘,去乘除数的倒数。本课则是进一步丰富分数除法的内涵,扩展到分数除以分数,并由此统一分数除法的法则。教材意图让学生利用知识的迁移得出分数除以分数的计算方法,并用一些直观的手段来验证此思路是正确的。练习中,还安排了一些旨在探讨分数除法中的规律(当除数大于1、小于1或等于1时,商相应地小于、大于或等于被除数)的内容。
教学目标:
1、理解分数除以分数计算法则的推导过程,掌握分数除以分数的计算方法。
2、在此基础上归纳出分数除法统一的运算法则。
3、教学过程中鼓励学生自觉运用化归的数学思想方法解决新问题。
教学过程:
一、复习引入,承前启后。
1、 口算。
6 9(算完指名说一说分数除以整数和整数除以分数的计算方法)
(板书:分数除以整数整数除以分数)
2、 师:这两种除法的计算方法好象有一种共同点,大家看出来了吗?(学生交流)
3、 师:对,都是化除为乘,用被除数乘除数的倒数。可如果是分数除以分数呢?
(板书:分数除以分数 )我们今天就来研究这一问题。
【设计意图:迅速唤醒学生的旧知,为知识的迁移创造一种条件。】
二、创设情境,推导算法。
1、出示例4:量杯里有升果汁,茶杯的容量是升。这个量杯里的果汁能倒满几个茶杯?(投影或挂图出示)
(1)指名列式:
(2)师:请同学们估计一下,能倒满几个茶杯?(学生发表意见)
可能出现的意见:
A、3杯。(==3)(板书)
B、凭感觉好象是3杯。
师:要是有量杯和茶杯就好了,倒一倒就可以知道结果。可现在没有,怎么办呢?能想出一个有说服力的方法吗?
【设计意图:让学生说出自己的第一感觉,是对学生主动思考的一种鼓励,但又不能只停留在猜测这一层次,要激励学生进一步找寻解决问题的方法,并以此来验证自己的猜测是否科学、合理。】
(3)学生讨论交流。
可能出现的方法:
A、化成整数计算。
升=900毫升 升=300毫升 900毫升300毫升=3,所以,=3
B、利用分数单位。
《分数除以分数》教学设计 篇六
一、教学目标
(一)知识与技能 通过具体的问题情境,探索并理解一个数除以分数的计算方法,能正确地进行计算。
(二)过程与方法 借助直观,经历一个数除以分数的计算方法的探究、推导过程,运用转化的思想领会计算方法的由来。
(三)情感态度和价值观
在数学学习过程中培养分析能力、知识的迁移能力、推理能力。
二、教学重难点
教学重点:探究并得出的一个数除以分数的计算方法。
教学难点:对一个数除以分数的算理的理解。
三、教学准备
多媒体课件。四、教学过程
(一)复习铺垫,温故旧知
1.计算。
2.说说下面的数量关系。
小何3小时走了9千米,平均每小时走多少千米?
3.填空。
小时有()个小时;1小时里有( )个小时。
(二)创设情境,提出问题
教学教材第31页例2。 小明小时走了2 km,小红小时走了 km。谁走得快些?
教师:题中有哪些信息?“谁走得快些?”实际上就是比较什么?你能根据题意列出算式吗?
预设:学生能叙述题中告知的信息是小明和小红各自行走的时间和对应的路程。借助前面的教学环节中对数量关系的描述,能理解“谁走得快些?”实际上是比较谁的速度快,速度=路程÷时间,由此根据题意分别列出算式。
(三)引导“转化”,探究新知 ,。
教师:上一节课我们已经学会了分数除以整数的计算方法,
现在你能试着把转化成除数是整数的除法并加以计算吗?
预设:
1.要想把除数变成整数而商不变,根据商不变性质,可得
(km)。
2.同样根据商不变性质,但除数可以化成1,即
(km)。
(四)数形结合,探明算理
教师:看来同学们对自己的计算方法都非常自信,那么教材中是怎样推导计算方法的呢?让我们一起来看一看。
1.阅读理解线段图。
教师:线段图中1小段表示什么?3小段又表示什么?(借助直观图,启发学生:1小时里面有3个小时。)
教师:求1小时走了几千米(即3小段),应该先求什么?
(借助直观,启发:应该先求1小段走了多少千米。)
2.阅读理解算式。
结合对话框,引导学生理解(km)。 教师:表示什么?又表示什么?
(启发:要求1小时行了多少千米,
要先求出小时行了多少千米,然后再求出3个小时行的路程。)
(五)强调“转化”,统一算法
1.对比交流,寻找规律。
教师:从例1中的
么? 与例2中的中,你发现了什
预设:通过对比,学生能得出:分数除法都可以转化为乘法计算。方法是:除以一个数等于乘这个数的倒数。
教师:例1和例2的计算过程有什么共同之处?
预设:学生通过观察,不难得出:不管哪种情况,都可以归结为“乘除数的倒数”来计算。
教师:小红1
小时能走多少千米?即
计算吗?试一试。 该怎样计算?你能用刚才得出的方法
教师:看看教材中是怎样计算的?为什么可以直接写成“
2.课堂小结,归纳算法。 ”
教师:通过例1和例2的计算,你能用一句话来概括分数除法的计算方法吗?(学生交流。)
教师:再看看教材中是怎样总结的,和你有什么不同吗?
预设:学生可以初步得出分数除法的计算方法:除以一个数,等于乘这个数的
教学方法: 篇七
教无定法,重在得法,贵在用法。依据《数学课程标准》"变注重知识获得的结果为知识获得的过程"这一教育理念和读讲精练教学法的理论精髓,我以学生的发展为立足点,预设的教学策略如下。
1、巧设情境,温习旧知。
2、读讲探究,合作交流。
3、初试验证,巩固新知。
4、分层精练,拓展延伸。
5、概括总结,深化感悟。
教学过程: 篇八
1、 温习旧知,巩固铺垫
出示几组口算题,每组个一种类型,指生说说计算方法,教师相机板书。
概括: 一个数 ÷ 分数 = 这个数 ×除数的倒数
2、教授新知,合作探究
①、出示例4、引导读题,列式
(1)为什么这样列?(因为要求能倒满几杯果汁就是求9/10里面包含着几个3/10,这就是除法意义中的包含除。这样就沟通了分数除法与整数除法的意义,让学生再一次理解分数除法与整数除法的意义是相同的。)
(2)师引导:前面我们学习的例1到例3的分数除法都是把除法转化成乘除数的倒数。那么分数除以分数你会计算吗?
2、初试验证,巩固新知。
(1)让学生自己尝试计算。
(2)教师就可以引导学生让学生利用58页的示意图上分一分,验证自己刚才的计算结果是否正确。通过验证结果是正确的。,让学生体会到自己用倒数的方法是正确的。
师总结:由此验证分数除以分数也可以是乘除数的倒数。
(3)做58页“练一练”(出示 两张)
3、分层精练,拓展延伸。
①、巩固各种类型的分数除法: 集体校对时可以找学生再说一说方法以得到巩固。
②、13、14应用题:用学习的知识解决生活实际问题。
③、思维训练:在□里填上适当的数。(体现练习的梯度)
④、□/11÷3=7/□ □/5×3/□=6/35 5/9÷□/4=□/27
4、、概括总结,深化感悟。
概括分数除法的一般计算方法。
(1)根据板书引导:我们学过的分数除法都有哪几种情况?
(2)这几种情况在计算时有什么相同的方法?
(3)如果把被除数叫做甲数,除数叫做乙数,(乙数不等于0),你能概括出分数除法统一的计算法则吗?
(4)板书:甲数除以乙数(0除外),等于甲数乘乙数的倒数
思考题:分数除法的计算方法是否适用于整数除法(让学生通过举例验证,得出结论,9/10÷3/10=9/10×10/3,让学生发现分数除法的计算方法在整数除法中也好用。
帮学生把前后的相关知识联系起来,形成系统的知识体系,让学生用简短的语言概括交流本节课的收获,这样的对话不仅有利于教师对课堂教学信息的及时了解,更有利于学生知识体系的完善和构建。
概述:
整节课我立足于学生的认知基础,努力实践新的课程理念。通过以上几个环节使学生的能力、情感、态度和价值观都得到提升。在师生互尊,生生互爱,共享学习,共享智慧中展现数学课堂的无限魅力。
板书设计:(略)
学习方法: 篇九
1、分一分、画一画等直观手段去理解
2、通过分析,比较,归纳出了算法
3、利用比较、类推,迁移的方法来尝试解决分数除以分数计算方法
4、通过直观的图示验证。
5、亲历动手操作――探究算法――举例验证――交流评价――法则统整一系列活动的全过程。
《分数除以分数》教学设计 篇十
一、教学目标
目标1:引导学生在已有知识、经验的基础上,经历解决一个数除以分数的计算方法的探索过程,归纳一个数除以分数的计算法则。
目标2:引导学生借助分数的意义、份数和数量的对应关系,运用转化方法解决问题,在学生交流活动中培养合作能力,知识运用能力,积累运用转化、迁移方法学习数学的活动经验,渗透数形结合解决问题的思想。
目标3:使学生在知识运用和问题解决过程中得到成功体验,激发学生进一步学习、探索数学的兴趣。
二、学情分析
学生在分数乘法的学习中,能借助已有知识和几何模型理解分数乘法的算理,归纳出分数乘法的计算方法。在《分数除法》单元的前2个课时的学习中,学生再次运用数形结合的方法,分析和总结出分数除以整数的计算方法,这都为学生研究、理解“一个数除以分数”的算理和计算方法积累了学习经验,通过本节课的学习,学生对“分数除法”所蕴含的数学思想方法会有进一步的理解,积累会更加丰富的数学经验。
三、重点难点
重点:引导学生借助分数的意义、份数和数量的对应关系,运用转化方法解决问题,在学生交流活动中培养合作能力,知识运用能力,积累运用转化、迁移方法学习数学的活动经验,渗透数形结合解决问题的思想。
难点:使学生在知识运用和问题解决过程中得到成功体验,激发学生进一步学习、探索数学的兴趣。
四、教学过程
4.1第一学时
4.1.1教学活动
活动1【讲授】
一、明确学习内容,导入新课
师:今天我们继续研究《分数除法》。
二、创设情境,研究除法计算
1、确定思路,列出算式
(1)提问:比较谁装得快,需要知道什么?
(2)怎样计算三人的工作效率,依据是什么?
理解题意,尝试计算
(1)÷2
在上节课的研究中我们知道了÷2就是求的是多少。
(2)150÷怎样计算
它与前面我们研究的分数除法有什么不同?
那么150÷又是求什么呢?解决分数问题的关键是正确理解分数的意义,引导:“小李3/4小时装了150千克”这句话你怎样理解?
根据作答情况,引导学生借助示意图分析题意,检验作答结果。
明确:也就是说其中的3份是150千克,4份就是1小时装的千克数。
请同学们根据理解,自己试着解答150÷
班内交流:
追问每一种算法的依据是什么。
说明:这几种计算方法都是在求小李的工作效率,所以可以把这些算使用等号连接起来。(板书:150÷3/4=150×1/3×4=150×4/3=200千克)
计算÷
回忆,我们是怎样研究150÷的计算的?
请你仿照上面的方法和步骤,尝试解决÷
归纳:这几种算法都是计算出了÷的商,所以也可以用等号连接算式(板书):3/25÷2/5=3/25×1/2×5=3/25×5/2=3/10吨=300千克
现在问题解决了吗?
问题解决后我们再回过头看看一看刚才研究的两个分数除法的计算过程,有什么共同的特点?
说一说:一个数除以分数怎样计算?
再联系上节课研究的分数除以整数,现在想想可以怎样概括分数除法的计算方法?
第三阶段
三、巩固练习,拓展提高
(一)基础练习
1、填空。(略)
2、选择。(按点2)
教师追问错因
3、计算。(按点3)
根据统计结果,决定是否进行计算(2)的练习。
(二)提高拓展
[说明:图片3]
四、总结提升,谈谈收获
以上就是众鼎号为大家带来的10篇《《分数除以分数》教学设计》,希望可以对您的写作有一定的参考作用。
上一篇:小学语文坐井观天教学设计4篇